If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+4k-60=0
a = 1; b = 4; c = -60;
Δ = b2-4ac
Δ = 42-4·1·(-60)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16}{2*1}=\frac{-20}{2} =-10 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16}{2*1}=\frac{12}{2} =6 $
| 2+1x=-23 | | 11x-3=4x+2. | | -2(z-3)=-4 | | 2-8x=-6-8x-2x | | 15x-20=35 | | 5d+-10d=-20 | | -10k+-12k-2=20 | | 5q+q-2=16 | | (11x=18)=(14x) | | 6g+-13g=14 | | (x/12)+2x-18=180 | | 6x-5=155 | | -3v+17=7(v-9) | | 6x+5=115 | | 30=-3-3x | | 25x+1.42=1.17 | | -3/2x=50 | | 3t-2t-5=-5 | | 6+x/6=1 | | y=1(-1)+5 | | -3.5+(x/7)=-5.2 | | 15=4t | | 6x+46=4x+32 | | -44r-11r=0 | | 16=1-5x-2x | | 1/3x(x+15)=-2 | | 2x-1-5=4x+1 | | 2(-3.5+2y)-1+3y-5=4(-3.5+2y)-y+1 | | 3x+5(x+3)=5x+3 | | 20=-3x-7x | | -8y-(-13y)=15 | | 3(x+3.5)=48 |